
Implementing
Stacks and Queues

for Lab 3

Over the rest of the semester we will implement a variety of
structures. We usually want to be able to say “new X” and get a
structure of type X, so that means X needs to be a class. We will
usually want to make the process of creating a structure separate from
adding data to it, so we can’t just use null to represent an empty
structure. For each structure the questions are: how do we create an
empty structure? How do we add data to the structure? How do we
remove data from the structure?

For dynamic structures we will usually make the Node structure as a
class nested within the larger class. For example, if we wanted to
make a queue class we might start

public class MyQueue<E> {
protected class Node {

E data;
Node next;
// Node constructors and methods come here

}
Node head, back etc. // Queue variables
// Queue constructors and methods come here

}

Stacks
Remember that stacks are “Last in, first out” structures.

For an ArrayList implementation we could do this:

To construct a Stack we will make an ArrayList data. The stack’s
push() operation corresponds to the ArrayList’s data.add().
The Stack’s pop operation corresponds to data.remove(size()-1).
The Stack’s size() operation is just the ArrayList’s size()
operation; the Stack is empty when the ArrayList is empty.

For example, if we create a new Stack and push 23, 34, and 45 on it
in that order, it will look like this:

23 34 45 ….

0 1 2 ‘’’’

data

Size == 3

Our stack implementation will start:

public class MyStack<E> implements StackADT<E>{
private ArrayList<E> data;

public MyStack() {
data = new ArrayList<E> ();

}

public void Push(E element){
data.add(element);

}
….

}

Queues are “First in, first out” structures. Data enters at the back of
the structure and leaves from the front.

The next slide shows a picture of a linked implementation of a queue.

[
23

[
34

[

45

back

[

head

We start an empty Queue with just the head node:
[

head back

We dequeue with head.next = head.next.next. We enqueue(x)
with Node p = new Node(x);

back.next = p;
back= p;

The only special case is that when we dequeue the last node in the
queue we need to set back=head

public class MyQueue<E> implements QueueADT<E> {
class Node {

E data;
Node next;
Node(E elt) {

data = elt;
next = null;

}
Node() {

this(null);
}

}
Node head, back;
int size;
// continued next slide

public MyQueue() {
head = new Node();
back = head;
size = 0;

}

public enqueue(E x) {
Node p = new Node(x);
back.next = p;
back = p;
size += 1;

}

// etc
}

